

J-AISI Business Demonstration WG Data Quality sub-working group

IT Promotion Agency, Japan(IPA)

Digital Infrastructure Center

Teppei Sakamoto

Jan. 15, 2026

HIROSHIMA Global Forum for Trustworthy AI

Digital Infrastructure Center,
Information-technology Promotion Agency,
Japan(IPA) | Japan AI Safety Institute(J-AISI)

Teppei Sakamoto

2018: NTT DATA Group Corporation

- AI/ML, Data Science, Statistics, etc.
- [XAI (Explainable AI)] (RIC TELECOM, 2021) co-author,

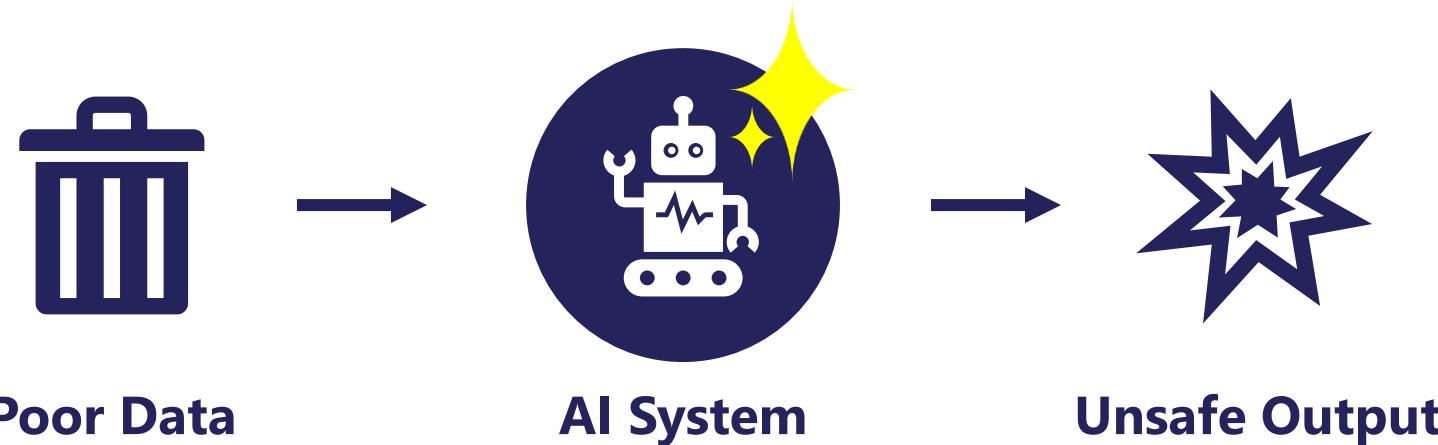
2025: Researcher, IPA [Current]

Japan AI Safety Institute (J-AISI)

As of Jan. 2026

- **Information-technology Promotion Agency, Japan (Leader)**
 - Fujitsu Limited
 - Kanematsu Corporation
 - National Institute of Advanced Industrial Science and Technology
 - National Printing Bureau
 - NEC Corporation
 - NTT DATA Japan Corporation
 - NTT DATA Value Engineer Corporation
 - Preferred Networks, Inc.
 - PricewaterhouseCoopers Japan LLC
 - SAS Institute Japan Ltd.
 - WingArc1st Inc.

“Garbage in, Garbage out”



- Data is the foundation—models and training depend on it
- Poor data quality leads to unreliable and unsafe AI outputs
- Understanding data quality challenges is the first step

Typical data quality challenges in the AI era— making AI smarter won't fix these.

- ◆ **Outdated or poorly maintained data**
 - AI outputs become unreliable when data is not updated or curated.
- ◆ **Lack of data provenance and transparency**
 - Users cannot judge whether results are reliable if the origin and processing of data are unclear.
- ◆ **Bias embedded in data**
 - Biased data leads to biased AI outputs, even when models are well designed.
- ◆ **Low machine readability**
 - Data stored in formats that AI cannot properly interpret causes incorrect or misleading results.

Operational layer

lead

Unsafe
Output

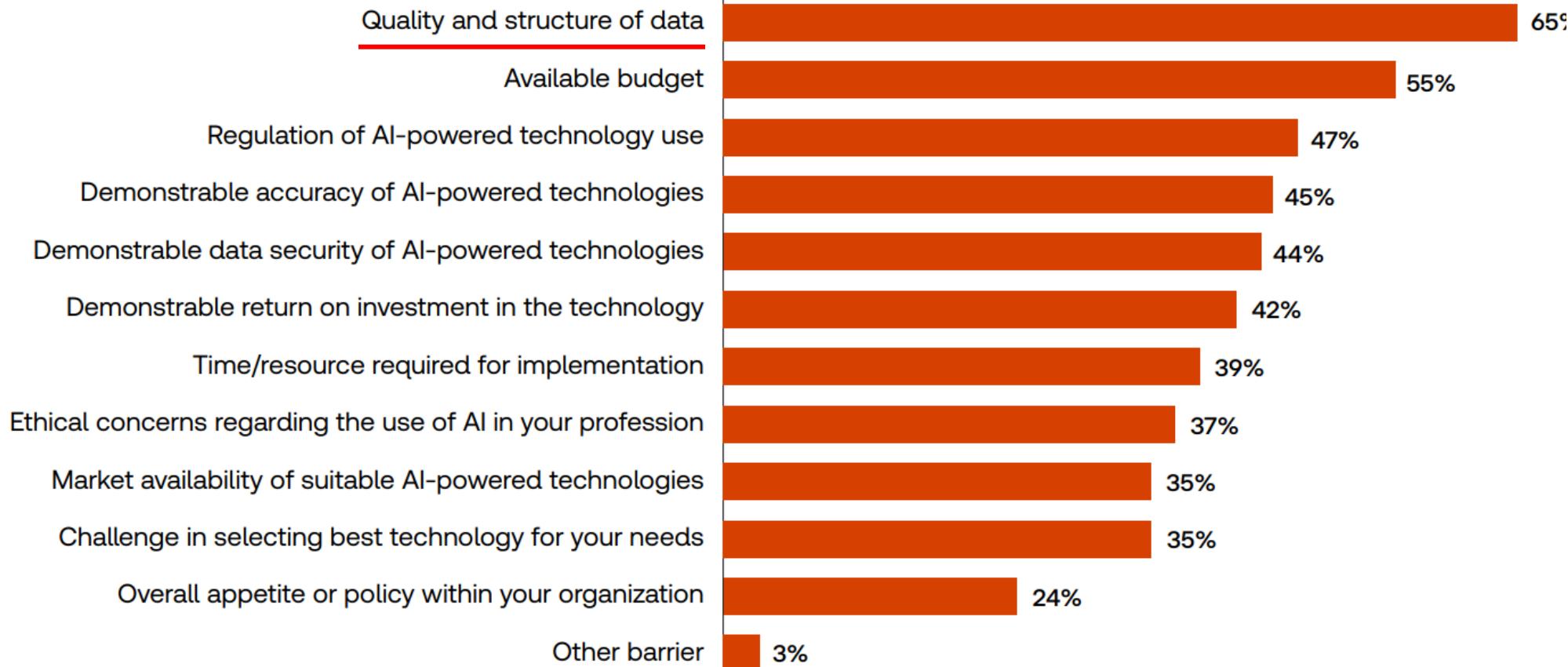
- ◆ **Gap between standards and practice**
 - While many data quality standards exist, practitioners struggle to apply them in real projects.
- ◆ **Immature data quality management in the AI era**
 - International consensus takes time, but AI deployment—especially generative AI—moves much faster.
- ◆ **Low organizational prioritization of data quality**
 - Compared to AI applications, data quality is often seen as a supporting function and receives insufficient investment

Management & governance layer

Many companies are adopting AI,
but the most significant challenge is data.

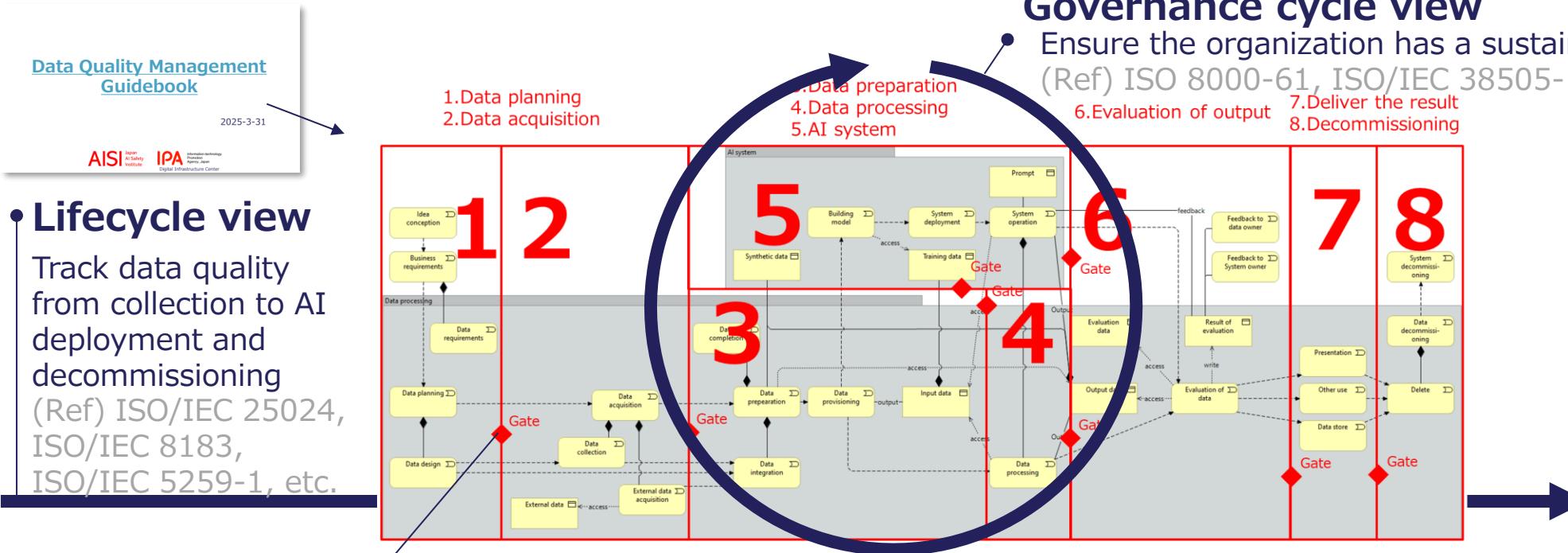
Barriers to AI adoption

% Selected



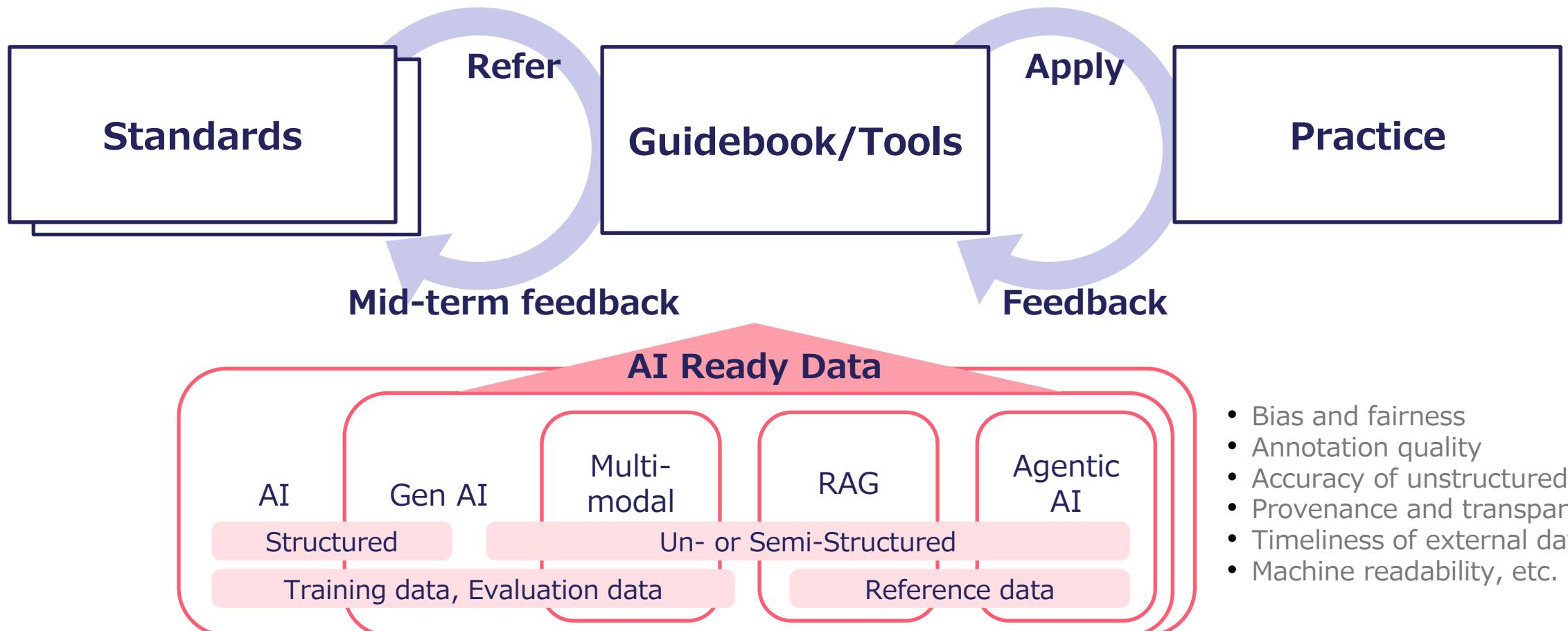
(Ref) [Thomson Reuters Institute 2025 C-Suite Survey](#)

- Published **AI data quality management** guidebook
- By viewing data for AI from three perspectives—**Lifecycle**, **Gateway**, and **Governance**—we can reassess data quality from multiple angles.
- This guide consolidates a wide range of **data-quality standards into a practical, easy-to-apply framework**.

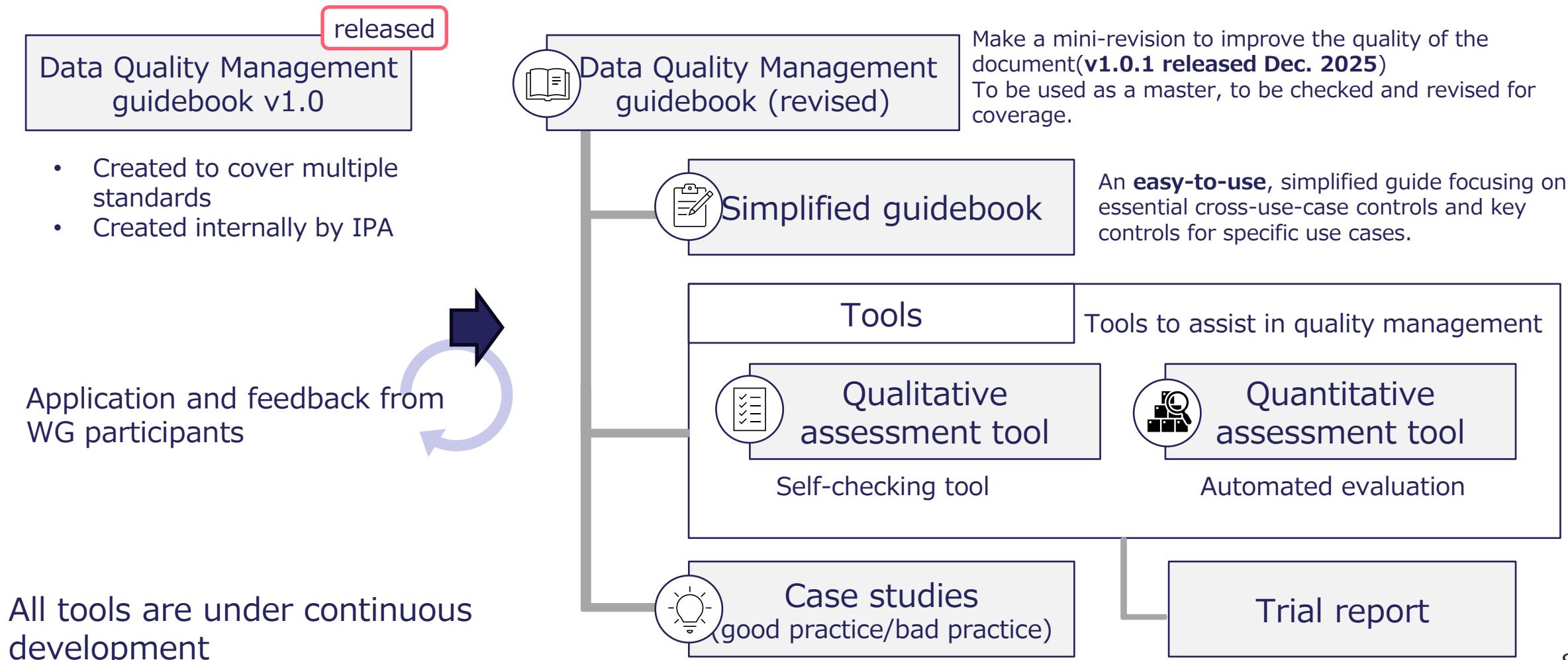


- **Gateway view (Characteristics)**
Define quality criteria at key decision points
(Ref) ISO/IEC 25012, ISO/IEC 5259, etc.

We complement existing data quality standards with practice-oriented guidance and tools, **bridging standards and real-world practice**.



We are incrementally updating the guidebook and developing supporting tools based on real-world use.



The guidebook was **well received conceptually**, but practitioners found it **difficult to apply directly in daily operations**.

✓ What was positively evaluated

- ◆ **Clear core message**
 - Emphasizes “*Garbage in, Garbage out*,” highlighting that AI success fundamentally depends on data quality.
- ◆ **Alignment with international standards**
 - Grounded in ISO and other international standards, ensuring credibility and legitimacy.
- ◆ **Comprehensive coverage**
 - Provides a broad, high-level view of data quality across governance, processes, and characteristics.

→ What needs improvement

- ◆ **Gap between standards and practice**
 - Still insufficient practical guidance for real-world projects.
- ◆ **Clarity of value and use cases**
 - Need clearer ROI of data quality and concrete, use-case-specific examples.
- ◆ **AI-era specific challenges**
 - Need guidance on data-AI version management and modality-specific issues (text, image, video, etc.).
- ◆ **Document usability**
 - Improve navigation, terminology, and overall readability for non-experts and busy practitioners.

Developing a Practical Checklist from the Guidebook

Based on the guidebook, we are developing a **practical checklist** for real-world use with data quality SWG and domain-specific SWGs.

Guidebook

Checklist

プロセス	項目 (参考日本語)	チェック	主なリスク種別	リスク具体所	品質特性	実施者	実施状況
データ収集	データを活用するシステムのサービス品質は明確に定義されているか。(サービス・コントローラ)	業務効率の悪さ	低品質なデータのクリーニングと修正に時間とリソースを割かなければならず、AI技術の導入期間が遅れ、運用効率が低下する。	全般	AIシステム開発者	システム全体の23%	実施で実現
データ計画	システムに必要なデータリストが定義されているか。	業務効率の悪さ	低品質なデータのデータベース化に時間がかかるため、運用効率が低下する。	完全性	AIシステム開発者	システム全体の23%	実施で実現
データ収集	各データについて品質管理指標が定義されているか。	業務効率の悪さ	低品質なデータのデータベース化に時間がかかるため、運用効率が低下する。	全般	AIシステム開発者	システム全体の23%	実施で実現
データ収集	各データのデータ品質基準は定義されているか。	監査決定の切り	低品質なデータのデータベース化に時間がかかるため、運用効率が低下する。	全般	AIシステム開発者	上記で実現した場合	実現
データ計画	データ・スキーマ化と設計方針が変更化されているか。	業務効率の悪さ	低品質なデータのデータベース化に時間がかかるため、運用効率が低下する。	全般	データ管理者	データモデル	実現
データ計画	必要なデータが定義され、利用可能か。	競争上の不利	より良いデータ・データ品質基準を実現するため、運用効率が低下する。	完全性、可用性	AIシステム開発者	システム全体の23%	実現
データ収集	データの活用に関する法的制約を遵守したか。	法的規制リスク	データの漏洩、AIモデルの監視、AIモデルの監視	コンプライアンス	データ管理者	リスト用意	実現
データ収集	データバイアスや偏り性が問題とされているか。	データ	GDPR、CCPAなどの遵守規制に沿うるため、運用効率が低下する。	機密性	データ管理者	対応用意	実現
データ計画	データに制約は含まれていないか。	データ	GDPR、CCPAなどの遵守規制に沿うるため、運用効率が低下する。	機密性	データ管理者	対応用意	実現
データ収集	データモデルや標準化された分類法を参照して実行しているか。	データ	データモデル、エラーアド、再実行、AIモデルの再トレーニング、誤ったデータによる品質の合意内訳を実現によって、データの漏洩、AIモデルの監視	RAMI、IIAR、EIの監視を実現	データ管理者	データモデル化	実現
データ収集	メタデータはDCATベースで設計されているか。	データ	GDPR、CCPAなどの遵守規制に沿うるため、運用効率が低下する。	機密性	データ管理者	W3Cで標準化されたデータモデル化	実現
データ計画	データ活用ツアーアクセスに関する一般的な規則を参照しているか。	監査決定の切り	不正確なデータや不完全なデータ、分析に欠陥もあるなど、その結果、組織の効率化がさらに悪化していく。誤った結果を監視するため、データの漏洩、AIモデルの監視	AIシステム開発者	データ漏洩における監査決定	実現	実現
データ計画	法規制に準拠するように設計されているか。	法的規制リスク	データ漏洩による法的規制 (GDPR、CCPAなど) を遵守するため、データの漏洩、AIモデルの監視	コンプライアンス	AIシステム開発者	運用するデータを実現	実現
データ取得	データを信頼できる信頼源から入手したか。	漏洩経路	低品質なデータによっては、個人、バーコード、利害関係者との接觸・信頼性損失、長時間のプロセス低下につながる可能性	データ管理者	データ漏洩における監査決定	実現	実現
データ取得	データの漏洩条件に則照はないか。	データ	低品質なデータによっては、個人、バーコード、利害関係者のデータ漏洩による法的規制 (GDPR、CCPAなど) を遵守するため、データの漏洩	データ管理者	各種データの監査決定	実現	実現
データ取得	データの活用条件に則照はあるか。	法的規制リスク	データ漏洩による法的規制 (GDPR、CCPAなど) を遵守するため、データの漏洩	コンプライアンス	データ管理者	リストアップした法的規制や漏洩	実現

illustrative

Quality improvement in practice

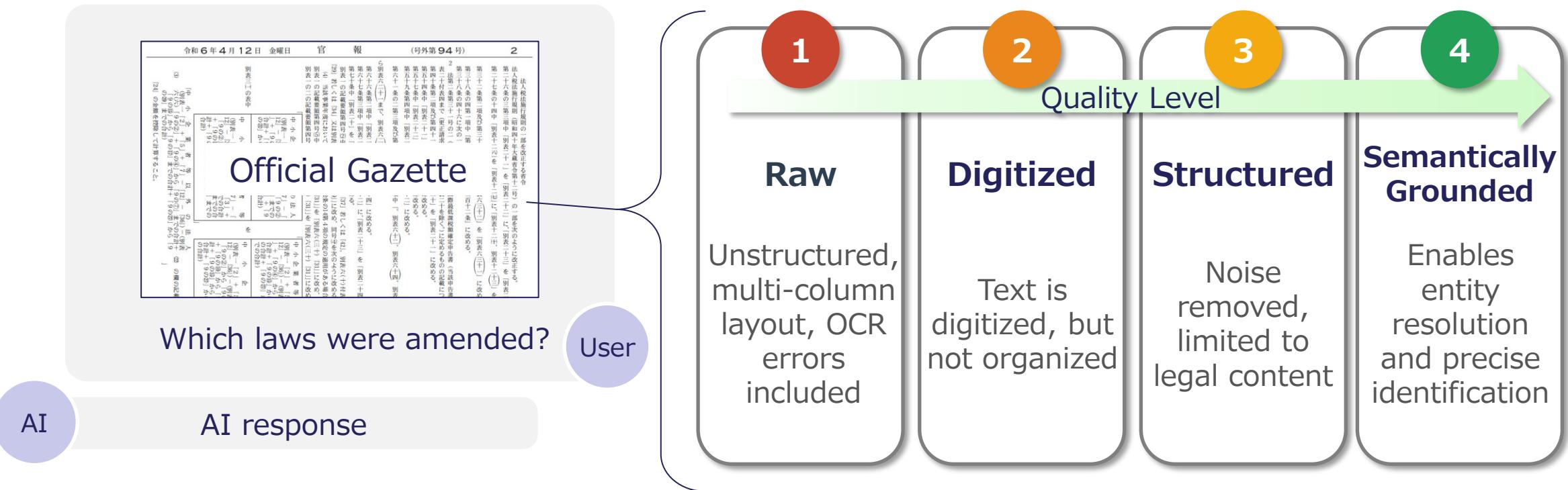
Feedback

- Data Quality SWG
- Domain-specific SWGs

First round of pilot application is currently underway

- Spreadsheet-based checklist
- 70+ items covering key data quality considerations
- Not intended for full compliance, but to raise awareness and support practitioners' decision-making.

Using Japan's Official Gazette as an example of high-value public data, we observe **how data quality levels affect AI response and safety**.



What this examination aims to clarify

- Accuracy and risk of AI responses depending on data quality level(*Effectiveness & Safety*)
- Trade-off between accuracy and preparation cost(*Cost-effectiveness*)

This examination does not validate the effectiveness of the checklist itself. Rather, it illustrates one of the key issues addressed by the checklist— machine readability and data structuring—through a concrete example. This case study is for working-group level discussion.

We aim to contribute **Japan-originated, practice-driven** frameworks to global AI discussions, reflecting **Japan's culture of quality**.

Short-term Initiatives (FY 2025)

- Revise guidebook
- Develop and test checklists
- Validate applicability through pilot use

Mid-term Initiatives (FY 2026–2027)

- Enhance assessment tool capabilities
- Cross-domain models
- Address new data and usage types (e.g., multimodal, multi-agent)

Long-term Initiatives (Future Vision)

- Establish continuous data quality models
- Update guidebook and tools
- Contribute Japanese frameworks to international discussions

- ♦ **Data quality is the foundation of AI safety.**
- ♦ We are developing a **data quality management guidebook**.
- ♦ We are collecting **practitioner feedback** for real-world use.
- ♦ We are building an actionable **checklist** to support practice.
- ♦ We are illustrating the approach through **case study using Official Gazette** data.

How you can engage

- ♦ Access our resource, share your cases and discuss with us.

https://aisi.go.jp/output/output_framework/data_quality_management_guidebook/

Thank you!

AISI

Japan AI Safety Institute