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⬧ This document provides an overview of attacks specific to AI systems and their 
impacts.

⬧ As AI systems evolve, attacks exploiting their characteristics are increasingly 
reported, leading to issues like training data leaks and abnormal  AI outputs.

⬧ In the real world, these issues affect people's lives:
• Leaked training data from AI used in medical diagnosis violates privacy.
• Abnormal AI outputs in automated driving can cause traffic accidents.

⬧ Thus, AI-specific security measures are essential.
⬧ This document outlines attacks and their impacts, as reported in academic 

papers and other sources, to aid in examining countermeasures.

Abstract
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⬧ Measures against conventional cybersecurity attacks are assumed to be necessary.
⬧ This document focuses on known attacks that require special attention when a 

system incorporates AI, specifically, those involve intervening in an AI model’s 
training or inference processes, as well as exploiting or tampering with its inputs 
and outputs.
• Examples Within the Scope:

• During Training: Data Poisoning Attacks (Intervention in the Training Process)
• During Inference: Model Extraction Attacks (Exploit the AI model’s output)

• Examples Outside the Scope:
• Theft of AI Models Through Unauthorized Access by Exploiting Network 

Device Vulnerabilities.
Note: Although this attack targets AI models, it does not involve interfering with the training or 
inference process of the AI models in the target system, nor does it manipulate its input or output.

Scope of This Document
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⬧ We assume AI systems consisting of two types of environments: development (training) and operation.
⬧ Although we mention RAG and other components often used with LLMs, the AI model is not limited to LLMs.
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⬧ The following figure illustrates attacks on the assumed AI system (with the scope described earlier).
⬧ Training data-related information gathering and other attacks can be further classified into multiple types.

Overview of Attacks on AI Systems
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⬧ The following figure illustrates the impacts of attacks described in the previous slide.
⬧ In some cases, the same type of impact may occur at multiple points, such as model leakage.

Overview of Impacts of Attacks on AI Systems
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⬧ The relationship between the attacks and their impacts described earlier is as follows.
⬧ The dashed line indicates the potential for use in an attack at the arrow’s endpoint.

Attacks and Their Impacts on AI Systems: Overview
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Attacks and Their Impacts on AI Systems: Detailed List

Attack Impact Attacker’s Capability Modality : Target AI[Literature] (This is summary from literature and does not limit modality or target)
A Model Extraction Model Leakage Massive queries to the model Image: NN[OSF19a,OSF19b,JSM+19,CBB+18], LR[TZJ+16]

Tabular: RR[WG18], DT[TZJ+16], LR,NN,SVM[TZJ+16,WG18]

B Training D
ata-related 

Inform
ation G

athering

Membership 
Inference

Training Data Leakage Input to the model Image, Tabular: LR,DT[YGF+18], NN[AYM+19,YGF+18] Text: NN[AYM+19]
Massive queries to the model Image, Tabular: NN[SSS+17,LBW+18] Text: LM[LSS+23]
Access to the model's internal info Image, Tabular: NN[NSH19]

Attribute 
Inference

Training Data Leakage Input to the model Image, Tabular: LR, DT[YGF+18]
Access to the model's internal info Image, Text: NN[SS20]

Property Inference Training Data Leakage Access to the model's internal info Image, Tabular: NN[GWY+18] Audio, Network Traffic: NN, SVM, HMM, DT[AMS+15]
Model Inversion Training Data Leakage Massive queries to the model Image, Tabular: DT, NN[FJR15] Text: Transformer[ZHK22]
Data Extraction Training Data Leakage Massive queries to the model Text: LSTM, RNN[CLE+19], LM[CTW+21,LSS+23]

C Model Poisoning Interpretability Malfunction Model tampering Tabular: NN, EM[SHJ+20]
Training Data Leakage Training program tampering Image: NN[SRS17] Text: SVM, LR[SRS17]
Computational Waste Model tampering Image: NN[CDB+23]

D Data Poisoning Model Malfunction Training data injection Image: NN[Car21] Text: LM[Sch19] 
Training Data Leakage Training data injection, Massive queries to the model Tabular: LR, NN[MGC22] Text: LR[MGC22]

E Evasion Model Malfunction Massive queries to the model Image: NN, LR, SVM, DT, kNN[PMG+17] Text: LM[BSA+22]
Access to the model's internal info Image: NN[SZS+14,GSS15] Text: LSTM[ERL+18]
Input to the model Text: Transformer[GSJ+21], LSTM, DA[WFK+19]

Interpretability Malfunction Massive queries to the model Image: NN[DAA+19]
F Energy-latency Computational Waste Input to the model Image, Text: NN[SZB+21]

Massive queries to the model Text: LM[BSA+22]
G Prompt Stealing Input Info Leakage Access to the model’s output Text to Image: Diffusion[SQB+24]

H Prompt Injection Safeguard Bypass Input to the model Text: LM[LDL+24,SCB+24,ZWC+23,WHS23,CRD+24,MZK+24,PHS+22,WFK+19]
Access to the model's internal info Text, Image: NN[CNC+23]

App Info Leakage Input to the model via system API Text: LM[ZCI24]
System Compromise AI system-referenced info poisoning Text, Image to Text: LM[GAM+23]
Internal Data Leakage/Corruption Input to the model via system API Text to Tabular: LM[PEC+25]
Input Info Leakage User-referenced info poisoning Text: A Specific Chat Service[Sam23]

I Code Injection System Compromise Malicious model distribution Any: Any[ZWZ+24]

J Adversarial 
Fine-tuning

Safeguard Bypass Access to the model's internal info Text: LM[YYC+24]
Training Data Leakage Access to fine-tuning functionality Text: LM[CTZ+24]

K Rowhammer Model Malfunction Access to physical memory Image: NN[LWX+24]
Access to model’s internal info, physical memory Image, Text: LM, Transformer[NMF+24]

Model Leakage Access to physical memory Image: NN[RCY+22]
NN: Neural Network, LR: Logistic Regression, RR: Ridge Regression, SVM: Support Vector Machine, DT: Decision Tree, kNN: Nearest Neighbor, HMM: Hidden Markov Model, LM: 
Language Model, LSTM: Long-short Term Memory, RNN: Recurrent Neural Network, EM: Ensemble Method, DA: Decomposable Attention
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⬧ By observing the output produced in response to given input data, this attack can cause 
the leakage of information about the AI model without requiring direct access to it.
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⬧ Information about the training dataset is gathered from the AI model’s internal details and the correspondence 
between its inputs and outputs. There are variations of the attack depending on the type of information targeted.

Attack B: Training Data-related Info Gathering
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⬧ By modifying the information or training programs of the AI model, this attack can cause interpretability 
malfunctions, computational waste, and training data leakage when the model is in operation.

Attack C: Model Poisoning
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⬧ By inserting special data into the training dataset, this attack can cause the model to malfunction when 
processing input information during operation or the leakage of information about the remaining training data.

Attack D: Data Poisoning
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⬧ By providing the AI system with specially crafted inputs called adversarial examples during 
operation, this attack can cause malfunctions in both its output and interpretability.

Attack E: Evasion
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⬧ By providing the AI system with specially crafted inputs called sponge examples during operation, 
this attack can waste computing resources, such as by increasing response time and energy consumption.
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⬧ By inferring the original prompt from outputs such as images generated by the AI model, 
this attack can leak input information that constitutes prompt engineering know-how.

Attack G: Prompt Stealing
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⬧ By directly inputting adversarial instructions into the model or indirectly injecting them through its information 
sources, this attack can cause various forms of information leakage, safeguard bypass, and system compromise.

Attack H: Prompt Injection
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⬧ Embedding executable code within the AI model itself and ensuring that the embedded 
code is executed when the AI model is invoked can lead to system compromise.

Attack I: Code Injection
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⬧ By performing specific fine-tuning on the target pre-trained AI model, the 
AI model is manipulated to bypass safeguards and leak its pre-trained data.

Attack J: Adversarial Fine-tuning

Dev. (Training)

Operation

AI System 
User

AI System 
User

External Knowledge

Internal Knowledge

Training Dataset

Application

Fine-tuned AI Model

Fine-tuned AI Model

AI System (Operation Environment)

AI System (Training Environment)

AI Model 
Developer

Retrieved Info (RAG)

AI Model Info

Training Data Training Data

Plugin Integrated System
Knowledge Data

Input Info

Components Often Used with LLMs

Continuous learning with 
input info is also assumed

Pre-trained AI Model

Continuous Learning of the AI Model

Deployment of the AI Model

Target AI System

Training DataTraining Data Collection

Output Info (Including Explanation)Input

Output

Input

Fine-tuning 
Dataset

External Systems, 
Sensors, etc.

External Systems, 
Actuators, etc.

Legend

Data Flow

Attack Flow

J: Adversarial Fine-tuning

Attacker

8: Safeguard Bypass

2: Training Data Leakage

19



AISI
Japan 

AI Safety 

Institute

⬧ An attacker who shares physical memory with the target AI model induces bit flips in the 
model’s memory through memory cell interference, causing model leakage or malfunction.

Attack K: Rowhammer
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